
www.manaraa.com

Mirokernels as Foundations for Distributed SystemsJohn Bellardo, Mihael Copenhafer, and Greg Hamerlyfbellardo,mopenha,ghamerlyg�s.usd.eduDepartment of Computer Siene and EngineeringUniversity of California, San DiegoLa Jolla, CA 92093-0114Abstrat. There are a number of key issues in onstruting operating systems for distributed systemsthat are generally not present in operating systems for non-distributed or tightly-oupled systems.In partiular, a distributed system must provide transparent aess to shared resoures (e.g. memory,ommuniation hannels, I/O devies). In this paper we argue that the design philosophy of mirokernelsmakes them well-suited to the needs of distributed proessing. We ompare three di�erent mirokernels,Mah, Chorus, and QNX, in the areas of proess management, interproess ommuniation, and memorymanagement. We will show how eah of these systems implements these mehanisms and how theyfailitate distributed proessing.1 IntrodutionIn this paper we disuss the design philosophy of mirokernels and argue that mirokernelsare well-suited to address problems of distributed proessing. We ompare three di�erentmirokernels, Mah, Chorus, and QNX, in the areas of proess management, interproessommuniation (IPC), and memory management. Our work is losely related to Tanenbaum'searlier researh on mirokernels for parallel systems [8℄, but is di�erent in two respets. First,we believe that mirokernels o�er bene�ts not only in tightly-oupled systems, but also indistributed (loosely-oupled) systems. Seond, our study ompares two researh systems(Mah and Chorus) with a ommerial system (QNX).Setion 2 disusses distributed proessing and the new problems it reates. Setion 3disusses our model of a typial mirokernel, and setions 4-6 disuss Mah, Chorus, andQNX in the areas of proess management, interproess ommuniation, and memory man-agement. Setion 7 ompares these three mirokernels with respet to the needs of distributedproessing. Setion 8 onludes.2 Distributed ProessingDistributed proessing attempts to distribute the omputation of a task among several om-puters on a network. This tehnique an speedup omputation and inrease resoure utiliza-tion. However, these bene�ts also ome with new design problems. These inlude inreasedommuniation and synhronization osts, network transparent aess to resoures, salabil-ity, remote proess ontrol, and fault-tolerane. We explain these problems briey here, anddisuss how mirokernels help solve them in Setion 7.{ Communiation and Synhronization. Tasks that run in parallel need to ommuni-ate and synhronize with one another. This ommuniation an be very ostly, espeiallyover a network.



www.manaraa.com

{ Network Transpareny. It is possible to simplify the programming model for distribut-ed systems by providing network transparent aess to resoures. This requires a uniforminterfae that is independent of the loation of the resoure.{ Salability. It is desirable to have a proportional inrease in system performane whenthere is an inrease in the available resoures (i.e. additional omputers).{ Proess Control. Distributed systems need to be able to reate and ontrol proesses onremote mahines. This provides onurreny and the ability to load balane omputations.{ Fault-Tolerane. Sine distributed systems have more resoures than tightly-oupledsystems, there is a greater risk that any one part of the system may fail. Therefore, it isimportant that distributed systems are able to ontinue making progress in the fae ofpartial system failures.3 Typial MirokernelMirokernels are an operating systems design approah whih emphasizes providing only themost essential funtions as part of the kernel. While there is no single de�nition of whatthese essential funtions are, most mirokernels ontain failities for proess management,interproess ommuniation, memory management, and devie I/O.{ Proess Management. Fine-grained ontrol of proesses is typially provided in theform of threads. Proesses may have multiple threads of exeution that share the sameaddress spae.{ Interproess Communiation. Messages provide a way for proesses to ommuniatewith one another and with the kernel. Message passing is often implemented with Send()and Reeive() primitives.{ Memory Management. Abstrat memory objets are typially provided to protetregions of memory. Virtual memory management may be implemented as part of thekernel or as a user-level proess.{ Devie I/O. Sine devie I/O is a privileged operation, a mirokernel provides abstra-tions for ommuniating with devies.Higher-level features suh as devie drivers, �le systems, swapping, and networking areimplemented as user-level proesses. By inluding only ore funtionality, mirokernels arevery small, and are potentially more exible and portable than traditional (monolithi) de-signs whih implement a greater number of features in the kernel. The drawbak of providingonly ore funtionality is that user-level proesses whih are traditionally part of the kernelmust now ommuniate with the kernel using the interproess ommuniation failities. Thisan lead to a loss of performane.4 MahThe Mah projet began at Carnegie Mellon University in 1985 where the �rst three versionswere developed before the Open Software Foundation took over the projet. Mah has alwaysbeen fully BSD ompatible. The �rst two versions (1.x, 2.x) ontained the majority of theBSD ode in the kernel, hene they would not be onsidered \true" mirokernels. In version2



www.manaraa.com

3 the vast majority of the BSD ode was moved into user-level proesses[4℄ and the kernelontained only the bare neessities, making it a true mirokernel. This will be the version ofMah that we look at in more depth. For more detail see [9℄.4.1 Proess ManagementThe Mah kernel provides two abstrations that together represent a UNIX proess: the taskand the thread.A Mah task is used as a storage ontainer for resoures. All resoures are alloated atthe task level. Some examples of this are �les, memory, ports, and threads. The task is alsoused as the unit of leanup. If a violation ours within a task all the resoures in use by thattask will be released, inluding all of its threads. A task must ontain at least one thread.The thread is the basi unit of exeution. Eah thread is owned by a single task andhas aess to all of the task's resoures (inluding memory and �les). The only data privateto a thread is that thread's stak and a program ounter. A task with only one thread isequivalent to a proess in UNIX. If a task is suspended none of its threads will be onsideredfor sheduling.Mah makes its sheduling deisions at the thread level. Beause all threads are equal(priorities aside) to the kernel, multiple threads from the same task an be sheduled to runsimultaneously if there are enough CPUs. In addition, when one thread performs a blokingsystem all just that thread is bloked, not the thread's task.Mah provides primitives that operate on tasks and threads. These operations are invokedby sending a message to a speial kernel port (see the desription of IPC below). They allowtasks and threads to be reated, deleted, suspended, and resumed. They also allow a threadto voluntarily relinquish its proessor. When a new task is reated an existing task is usedas a \template" for the new task. The template task spei�es how its resoures are to beshared when reating a new task. The di�erent levels of sharing allow tasks to share memoryobjets (see the Memory Management setion below).4.2 Interproess CommuniationMah provides a set of message passing primitives for IPC. Mah uses ports and apabilitiesto make message passing seure.A port an be thought of as a mailbox. Messages are sent to and read from ports. Eahtask has a kernel-maintained port table in kernel proteted memory. The port is an indexinto this table. Eah entry in the table ontains a apability to send that partiular port.The di�erent types of apabilities are send, send one, and reeive. The reeive apability isexlusive.There are two ways a task an get a apability to a port. The �rst way, inheriting itfrom the template task when it is reated, is desribed below in the setion on memorymanagement. The seond way is in a message sent by another proess whih has a portapability.Mah de�nes two di�erent type of messages: simple and omplex. Simple messages arepassed as-is from the sender to the reeiver; the kernel does not have any knowledge of thetype of data in the message so they an't be used to send apabilities. Complex messages are3



www.manaraa.com

omposed of an arbitrary number < type; size; data > tuples. During the proess of deliveringa omplex message the kernel sans through all of the tuples looking for one whose type isapability. For eah tuple it �nds that mathes this riteria the kernel reates a apability inthe reeiving task's port table and modi�es the message to refer to the new apability. Sinereeive aess to a port is exlusive the kernel may have to remove the reeive apabilityfrom the sender if the apability is being sent in the message.All kernel servies (with the exeption of message passing) are invoked by sending amessage to a well known kernel port provided by the template task. A proess ommuniateswith a devie by obtaining and then sending/reeiving messages to a port representing thedevie being aessed.Network transpareny in Mah is ahieved via a network message proxy. The job of theproxy is to forward all of the neessary messages aross the network to their destination, andto reeive all inoming messages and dispath them to the orret proess.4.3 Memory ManagementMah is unique in its approah to memory management. It allows a small subsetion ofone task's virtual address spae to be managed by another user-level task. The unit ofmemory alloation in Mah is alled a memory objet. A memory objet oupies a numberof ontiguous bytes in the requesting task, and is managed by a task we refer to as an objetpager (possibly the same task).When a task requests a new memory objet it spei�es an objet pager (the kernelprovides a default objet pager) and the virtual address where the new objet should appear.The kernel reates a apability to represent the newly requested objet and sends it to theobjet pager in a new objet request message. The pager then examines the message anddetermines if it wants to satisfy the request. The kernel also reates two additional apabilitiesfor the memory objet that are used to ommuniate to/from the objet pager.During the life of the memory objet the kernel makes servie requests to the objetpager. For example, the kernel an request that data be brought into a page frame to satisfya page fault, and the kernel an request that a page be ushed out to baking store.Mah provides the objet pager with the ability to ontrol the permissions on the objetsit administers. This allows the pager to implement features suh as opy-on-write sharingwithout speial kernel support. The kernel also allows the pager to send the kernel mes-sages that pertain to a memory objet's state. Thus the pager an inform the kernel that apartiular page frame is no longer needed by the memory objet and an be used for otherpurposes.There is no degree of trust between the kernel and objet pagers, whih reates a seurityproblem for the kernel. It must protet itself from maliious objet pagers. Mah does providekernel mehanisms to deal with this problem, but the seurity issue still exists.The interfae that is used during the ommuniation between the kernel and the pageris entirely message driven. The pager reeives and responds to messages from the kernel,and vie versa. When used with the transparent network interfae as desribed above, Mahan easily do remote paging. That means that the objet pager an reside on a di�erentomputer. 4



www.manaraa.com

5 ChorusChorus began as a researh projet in 1979 at INRIA in Frane. The goal was to build atransparent, distributed mirokernel that provided better resoure utilization, performane,and fault-tolerane than then-urrent monolithi kernels.While at INRIA, Chorus underwent three major revisions. The �rst version, Chorus-V0, established some of the main onepts still used in the system, partiularly the use ofmessage passing within the kernel, and the notion of system proesses alled \ators." Thesubsequent versions, Chorus-V1 and Chorus-V2, re�ned existing features and added supportfor binary ompatibility with UNIX appliations.The urrent version, Chorus-V3, is an e�ort to move Chorus into an industrial setting.The system was rewritten in C++ and augmented with real-time support. Chorus-V3 willbe the basis for further disussion. This setion is only intended to over ertain key aspets.More omplete disussions are available elsewhere in publiations [1{3, 5℄.5.1 Proess ManagementA proess in Chorus de�nes a proteted address spae whih enapsulates the followingresoures: a set of threads that share the resoures of the proess, a virtual memory ontext(disussed later), and a set of ports for ommuniation with other proesses [5℄. There arethree types of proesses in Chorus, eah having di�erent exeution privileges.{ Supervisor proesses exeute in the same address spae as the mirokernel and are per-mitted to diretly exeute kernel instrutions. They may also exeute privileged I/Oinstrutions.{ System proesses are permitted to exeute kernel operations but may not exeute privi-leged I/O instrutions. Unlike supervisor proesses, system proesses exeute in a privateaddress spae.{ User proesses may exeute neither kernel operations nor privileged I/O instrutions.They run in a private address spae.Although Chorus an support multiple simultaneous proesses, it is not possible to mi-grate a proess and its threads to another site on a distributed system.Many threads an exeute onurrently within a proess. Eah thread is haraterized bythe state of the proessor (program ounter, stak pointer, registers, et.). The shedulingsheme is very exible: although the basi sheme is priority-based, Chorus also supportstime-sliing and priority degradation on a per-thread basis.Chorus supports UNIX-like fork() and exe() system alls for reating new proesses.Threads are synhronized using mutexes, semaphores, or spin loks. These synhronizationprimitives may be used to onstrut ondition variables and monitors.5.2 Interproess CommuniationProesses ommuniate by passing messages via port objets. Chorus messages are ontiguousbyte strings whih onsist of a 63-byte header and a variable length body. Ports are abstratentities whih represent the address of a proess and a queue of unread messages. Their5



www.manaraa.com

names are globally unique identi�ers, making them loation independent. While ports inura performane penalty by providing an extra level of indiretion between ommuniatingthreads, they provide a number of useful funtions:{ Flexible Communiation. Threads from di�erent proesses on potentially di�erentsites of a distributed network may share messages using ports.{ Multiple Communiation Paths. A single thread may aept multiple inoming mes-sages by attahing more than one port to itself. Conversely, multiple threads may listenon a single port, allowing onurrent proessing of data.{ Port Groups. It is also possible to group ports from various threads together into portgroups. Messages may be sent to port groups providing a form of multiasting. Likeindividual ports, port groups are named by a unique identi�er.{ Dynami Reon�guration. Ports may be migrated to di�erent sites. This allows theimplementation of servie provided by a server to be reon�gured (whih may involveremoving the server from the network temporarily) without interrupting the lients ofthat servie.{ Protetion. Ports prevent unauthorized aess to threads sine the aess to a portrequires an appropriate apability.Chorus o�ers two ommuniation protools. The �rst is asynhronous, one-way messagepassing. Chorus makes no guarantees about the reliability of a one-way message transfer.This protool provides a highly eÆient form of ommuniation for servies whih do notrequire an expliit reply from a reipient. It may also serve as a basis for more reliableommuniations protools.The seond form of ommuniation is remote proedure alls (RPC). Unlike one-waymessages, RPC is synhronous and reliable. More spei�ally, RPC guarantees that the theresponse reeived by a lient is that of the server whih reeived the original request.For transferring large bloks of data, Chorus ouples virtual memory and interproessommuniation whih permits opy-on-write tehniques.5.3 Memory ManagementThe unit of data abstration in Chorus is alled the segment. Segments generally representsome form of seondary storage suh as a �le. Similarly to other abstrations in Chorus,segments are global and are identi�ed by apabilities.Eah proess' address spae is divided into regions. A region is a ontiguous range ofvirtual addresses within a proess whih maps a portion of a segment to a given virtualaddress. Assoiated with eah mapping is a set of aess rights.System proesses known as mappers are responsible for mapping segments onto regions.If a proess makes a request to read or modify data within a region, the mapper returnsthe appropriate segment ontaining the data. Segments are swapped on a demand basis bya user-level proess alled the External Mapper.6 QNXQNX is a ommerial mirokernel-based operating system provided by the QNX SoftwareSystems orporation. It urrently supports Intel x86-based systems, and is being ported to6



www.manaraa.com

the Motorola PowerPC 7400. QNX is targeted for real-time systems and embedded systemsas well as workstation-lass platforms. The mirokernel is quite small (12 Kb of ode) andrequires one servie, the proess manager. More information an be found in [6, 7℄.6.1 Interproess CommuniationQNX handles IPC via message passing. Communiation endpoints are spei�ed by proessIDs. Communiation is network transparent in QNX: any proess may ommuniate withany other proess on a network if it has the orret permissions. The ommuniating pro-esses are not aware of the loation of the other proess. When the kernel reognizes that aommuniation request is for a non-loal destination, it invokes the kernel's network interfae.QNX has two optimizations to make message passing eÆient: synhronous ommunia-tion and multipart messages. The message passing primitives in QNX (send/reeive/reply)only allow synhronous ommuniation. Beause of this, the kernel an opy memory diretlyfrom the sender's address spae to the reeiver's without bu�ering the message. This savesone opy operation per message, and redues the size of the kernel's bu�ers.QNX messages ome in two avors: single and multipart messages. Single messages aretypial ontiguous-bu�er data transfers; the sender sends a blok of data, and the reeiverreeives it.Multipart messages are useful when message data is not in a ontiguous blok, but indisjoint loations. Without multipart messages, the sending proess would have to reateand opy the data into a ontiguous bu�er, and the reeiving proess would have to reate aontiguous bu�er, reeive the message, and unpak the data by opying it out. Instead, thesender and reeiver an eah reate an MX ontrol struture. This struture spei�es wherethe di�erent parts of the message are loated (in the sender's address spae), and where theyshould be plaed (in the reeiver's address spae). The MX struture is basially a blok ofpointers to di�erent portions of memory. The kernel uses this information to opy the datadiretly from the sender to the reeiver.In addition to messages, QNX also supports IPC through signals and proxies. Both signalsand proxies are forms of asynhronous ommuniation, where the reeiver does not need tointerat with the sender. A proxy an simply be thought of as a non-bloking message, anda signal is a traditional UNIX-type signal where no data is transferred.Synhronization is handled in QNX via message passing (sine the primitives are syn-hronous) and shared memory semaphores.6.2 Proess ManagementThe QNX mirokernel handles proess sheduling, but proess management is handled bythe proess manager, whih is a separate proess. However, the proess manager runs in thekernel's address spae; no other proess or OS servie does this.The proess manager supports proess reation through the standard fork() and exe()primitives, and adds spawn(). Spawn merges the funtionality of fork and exe (for eÆien-y), and an reate a hild proess on any other node on the network.The kernel handles proess sheduling based on proess priorities and three shedulinglasses: FIFO, round-robin, and adaptive. The highest priority proess that is ready to run7



www.manaraa.com

will be given the proessor. If there are multiple proesses at the same highest priority, thesheduling lasses of eah is used to determine whih should be run. Eah priority has anassoiated ready-to-run queue. FIFO and round-robin shedule proesses similarly, but FIFOhas no notion of a timeslie { a proess runs until it is preempted or it yields ontrol (bymaking any kernel all). Adaptive sheduling is a form of priority degradation; it lowers aproess' priority by one when it onsumes its timeslie, and raises it again when it bloks. Thisis proposed as a good poliy for ompute-bound proesses mixed with interative proesses.The sheduler is run whenever a proess beomes unbloked, a timeslie expires, or a runningproess is preempted (by a higher priority proess).6.3 Memory ManagementThere was no information available about how QNX performs memory management. Thekernel does not provide swapping by itself, however, so we presume that while the kernelperforms memory alloation, a user-level proess provides swapping.7 ComparisonsIn this setion we draw onlusions about whih mirokernels o�er better support for eahof the �ve design problems of distributed systems desribed in Setion 2: (1) network trans-pareny, (2) ommuniation, (3) proess ontrol, (4) salability, and (5) fault-tolerane. Forertain problems, we found that a partiular mirokernel o�ered key advantages. More gener-ally, we found that the fundamental design of mirokernels o�ers solutions to these problems.7.1 Network TransparenyAll three mirokernels examined in this paper implement failities for sending messages arossthe network transparently. This servie is implemented in the form of user-level networkproxies at eah node.The exibility of this sheme is demonstrated by the network paging servie o�ered byMah and Chorus. The addition of the network paging failities ame at little ost beausethe existing paging failities already used messages to ommuniate with the mirokernel.The only neessary addition was a network messaging server.Network paging is not the only servie that bene�ts from the presene of a messagingserver; the entire design of mirokernels is entered around messaging, so the majority of theservies are easily distributed in this manner.7.2 CommuniationDistributed appliations on a network require message passing for ommuniation. The ef-�ient message passing of mirokernels an support this requirement of distributed applia-tions.All three mirokernels inlude interesting optimizations for ommuniation. For example,both Chorus and Mah o�er opy-on-write semantis for message passing. QNX, however,performs fewer memory opies due to a ombination of synhronized messages and the MXstruture. Although we lak performane data, we believe this enhanement gives QNX anadvantage in shared memory message passing.8



www.manaraa.com

7.3 Remote Proess ManagementWe found no properties inherent to mirokernels that address the issue of remote proessmanagement. While all three systems we investigated have the ability to reate and om-muniate with remote proesses, whih is valuable, we do not believe that these features areinherent to mirokernels.Additionally, we found that none of the systems allowed proess migration aross a net-work, whih we thought ould hinder omputational load balaning. Sine mirokernels havea deoupled design with an emphasis on network transpareny, we believe that proess migra-tion should be easier to implement. We would like to explore this area further to determinewhy proess migration has not been implemented and what its assoiated osts and bene�tsare.7.4 SalabilitySine many of the servies of a mirokernel are implemented as user-level proesses, it ispossible to on�gure nodes of a distributed network with di�erent servies. This minimizesthe number of resoures dediated to servies that may never be used by a node. Furthermore,it is possible to ahieve this without ompiling a di�erent version of the kernel for di�erentnodes.The port abstration an also provide a measure of salability. Consider a set of serverswhih share and listen on a single port. It is easy to add additional servers that listen onthe same port. Even though both Mah and Chorus o�er ports, only Chorus allows multipleproesses to reeive on a single port.It is interesting to note that QNX sales down very well. Its small memory footprintmakes it useful in embedded systems where the other kernels would not �t.7.5 Fault-ToleraneMirokernel design o�ers fault-tolerane in several ways related to the deoupled struture.Beause most operating system servies run in their own proteted address spaes, the failureof one will not a�et the rest of the system. Additionally, beause these servies run as user-level proesses, they an be stopped and restarted if failures do our, while the rest of thesystem an make progress. Finally, the simpliity of mirokernels lends to their orretnessand reliability.The port abstration of both Mah and Chorus provides further potential for fault-tolerane. In the event of a failure in either Mah or Chorus, the kernel an rediret allfuture messages to the failed proess to another proess that provides the same servie.QNX laks this ability beause it uses proess IDs to determine the destination of messages.8 ConlusionIn this paper, we ompared Mah, Chorus, and QNX in the areas of proess management,IPC, and memory management, to see how these systems dealt with ertain problems ofdistributed proessing. While we found some interesting di�erenes in how the three mi-rokernels solved these problems, we also found that the three mirokernels did not di�er9



www.manaraa.com

greatly from our model of a typial mirokernel. The strengths of eah system drew morefrom sound mirokernel implementation than unique optimizations.As a subjet for future work, we are interested in studying the potential bene�ts andosts of proess migration in the ontext of distributed systems.We would also like to briey mention a few of the shortomings of our paper. First, wehose not to over some important problems of distributed omputing, partiularly seurityand devie I/O management. Seond, due to lak of funding, we were unable to gatherrelevant performane data to substantiate some of our laims.Referenes1. F. Armand, R.W. Dean. Data Movement in Kernelized Systems. In Proeedings of the Usenix Workshop onMiro-kernels and Other Kernel Arhitetures, April 1992.2. F. Armand, M. Guillemont, and P. Leonard. Towards a distributed UNIX System { the CHORUS Approah. InEUUG Autumn Conferene, pp. 413-431, 1986.3. A. Briker et al. A new look at miro-kernel-based UNIX operating systems: Lessons in performane and om-patibility. In Pro. of the EurOpen Spring'91 Conferene, May 1991.4. D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an Appliation Program. In Proeedings of the USENIXSummer Conferene, June, 19905. F. Herrmann et al. Chorus, a New Tehnology for Building UNIX Systems. In EUUG Autumn Conferene, 1988.6. QNX System Arhiteture. Available WWW <URL: http://www.qnx.a/literature/qnx sysarh/index.html>(1999).7. Symmetri Multi-Proessing (SMP) with the QNX Neutrino Mirokernel RTOS. Available WWW <URL:http://www.qnx.a/literature/whitepapers/smp.html> (1999).8. A. Tanenbaum. A Comparison of Three Mirokernels. In The Journal of Superomputing, July 1995.9. A. Tanenbaum. Case Study 4: MACH. In Modern Operating Systems, pp. 637-680. ISBN 0-13-588187-0.10. M. Young et. al. The Duality of Memory and Communiation in the Implementation of a Multiproessor Oper-ating System. In Proeedings of the 11th Operating Systems Priniples, November, 1987

10


