
www.manaraa.com

Mi
rokernels as Foundations for Distributed SystemsJohn Bellardo, Mi
hael Copenhafer, and Greg Hamerlyfbellardo,m
openha,ghamerlyg�
s.u
sd.eduDepartment of Computer S
ien
e and EngineeringUniversity of California, San DiegoLa Jolla, CA 92093-0114Abstra
t. There are a number of key issues in 
onstru
ting operating systems for distributed systemsthat are generally not present in operating systems for non-distributed or tightly-
oupled systems.In parti
ular, a distributed system must provide transparent a

ess to shared resour
es (e.g. memory,
ommuni
ation 
hannels, I/O devi
es). In this paper we argue that the design philosophy of mi
rokernelsmakes them well-suited to the needs of distributed pro
essing. We 
ompare three di�erent mi
rokernels,Ma
h, Chorus, and QNX, in the areas of pro
ess management, interpro
ess 
ommuni
ation, and memorymanagement. We will show how ea
h of these systems implements these me
hanisms and how theyfa
ilitate distributed pro
essing.1 Introdu
tionIn this paper we dis
uss the design philosophy of mi
rokernels and argue that mi
rokernelsare well-suited to address problems of distributed pro
essing. We 
ompare three di�erentmi
rokernels, Ma
h, Chorus, and QNX, in the areas of pro
ess management, interpro
ess
ommuni
ation (IPC), and memory management. Our work is 
losely related to Tanenbaum'searlier resear
h on mi
rokernels for parallel systems [8℄, but is di�erent in two respe
ts. First,we believe that mi
rokernels o�er bene�ts not only in tightly-
oupled systems, but also indistributed (loosely-
oupled) systems. Se
ond, our study 
ompares two resear
h systems(Ma
h and Chorus) with a 
ommer
ial system (QNX).Se
tion 2 dis
usses distributed pro
essing and the new problems it 
reates. Se
tion 3dis
usses our model of a typi
al mi
rokernel, and se
tions 4-6 dis
uss Ma
h, Chorus, andQNX in the areas of pro
ess management, interpro
ess 
ommuni
ation, and memory man-agement. Se
tion 7 
ompares these three mi
rokernels with respe
t to the needs of distributedpro
essing. Se
tion 8 
on
ludes.2 Distributed Pro
essingDistributed pro
essing attempts to distribute the 
omputation of a task among several 
om-puters on a network. This te
hnique 
an speedup 
omputation and in
rease resour
e utiliza-tion. However, these bene�ts also 
ome with new design problems. These in
lude in
reased
ommuni
ation and syn
hronization 
osts, network transparent a

ess to resour
es, s
alabil-ity, remote pro
ess 
ontrol, and fault-toleran
e. We explain these problems brie
y here, anddis
uss how mi
rokernels help solve them in Se
tion 7.{ Communi
ation and Syn
hronization. Tasks that run in parallel need to 
ommuni-
ate and syn
hronize with one another. This 
ommuni
ation 
an be very 
ostly, espe
iallyover a network.



www.manaraa.com

{ Network Transparen
y. It is possible to simplify the programming model for distribut-ed systems by providing network transparent a

ess to resour
es. This requires a uniforminterfa
e that is independent of the lo
ation of the resour
e.{ S
alability. It is desirable to have a proportional in
rease in system performan
e whenthere is an in
rease in the available resour
es (i.e. additional 
omputers).{ Pro
ess Control. Distributed systems need to be able to 
reate and 
ontrol pro
esses onremote ma
hines. This provides 
on
urren
y and the ability to load balan
e 
omputations.{ Fault-Toleran
e. Sin
e distributed systems have more resour
es than tightly-
oupledsystems, there is a greater risk that any one part of the system may fail. Therefore, it isimportant that distributed systems are able to 
ontinue making progress in the fa
e ofpartial system failures.3 Typi
al Mi
rokernelMi
rokernels are an operating systems design approa
h whi
h emphasizes providing only themost essential fun
tions as part of the kernel. While there is no single de�nition of whatthese essential fun
tions are, most mi
rokernels 
ontain fa
ilities for pro
ess management,interpro
ess 
ommuni
ation, memory management, and devi
e I/O.{ Pro
ess Management. Fine-grained 
ontrol of pro
esses is typi
ally provided in theform of threads. Pro
esses may have multiple threads of exe
ution that share the sameaddress spa
e.{ Interpro
ess Communi
ation. Messages provide a way for pro
esses to 
ommuni
atewith one another and with the kernel. Message passing is often implemented with Send()and Re
eive() primitives.{ Memory Management. Abstra
t memory obje
ts are typi
ally provided to prote
tregions of memory. Virtual memory management may be implemented as part of thekernel or as a user-level pro
ess.{ Devi
e I/O. Sin
e devi
e I/O is a privileged operation, a mi
rokernel provides abstra
-tions for 
ommuni
ating with devi
es.Higher-level features su
h as devi
e drivers, �le systems, swapping, and networking areimplemented as user-level pro
esses. By in
luding only 
ore fun
tionality, mi
rokernels arevery small, and are potentially more 
exible and portable than traditional (monolithi
) de-signs whi
h implement a greater number of features in the kernel. The drawba
k of providingonly 
ore fun
tionality is that user-level pro
esses whi
h are traditionally part of the kernelmust now 
ommuni
ate with the kernel using the interpro
ess 
ommuni
ation fa
ilities. This
an lead to a loss of performan
e.4 Ma
hThe Ma
h proje
t began at Carnegie Mellon University in 1985 where the �rst three versionswere developed before the Open Software Foundation took over the proje
t. Ma
h has alwaysbeen fully BSD 
ompatible. The �rst two versions (1.x, 2.x) 
ontained the majority of theBSD 
ode in the kernel, hen
e they would not be 
onsidered \true" mi
rokernels. In version2



www.manaraa.com

3 the vast majority of the BSD 
ode was moved into user-level pro
esses[4℄ and the kernel
ontained only the bare ne
essities, making it a true mi
rokernel. This will be the version ofMa
h that we look at in more depth. For more detail see [9℄.4.1 Pro
ess ManagementThe Ma
h kernel provides two abstra
tions that together represent a UNIX pro
ess: the taskand the thread.A Ma
h task is used as a storage 
ontainer for resour
es. All resour
es are allo
ated atthe task level. Some examples of this are �les, memory, ports, and threads. The task is alsoused as the unit of 
leanup. If a violation o

urs within a task all the resour
es in use by thattask will be released, in
luding all of its threads. A task must 
ontain at least one thread.The thread is the basi
 unit of exe
ution. Ea
h thread is owned by a single task andhas a

ess to all of the task's resour
es (in
luding memory and �les). The only data privateto a thread is that thread's sta
k and a program 
ounter. A task with only one thread isequivalent to a pro
ess in UNIX. If a task is suspended none of its threads will be 
onsideredfor s
heduling.Ma
h makes its s
heduling de
isions at the thread level. Be
ause all threads are equal(priorities aside) to the kernel, multiple threads from the same task 
an be s
heduled to runsimultaneously if there are enough CPUs. In addition, when one thread performs a blo
kingsystem 
all just that thread is blo
ked, not the thread's task.Ma
h provides primitives that operate on tasks and threads. These operations are invokedby sending a message to a spe
ial kernel port (see the des
ription of IPC below). They allowtasks and threads to be 
reated, deleted, suspended, and resumed. They also allow a threadto voluntarily relinquish its pro
essor. When a new task is 
reated an existing task is usedas a \template" for the new task. The template task spe
i�es how its resour
es are to beshared when 
reating a new task. The di�erent levels of sharing allow tasks to share memoryobje
ts (see the Memory Management se
tion below).4.2 Interpro
ess Communi
ationMa
h provides a set of message passing primitives for IPC. Ma
h uses ports and 
apabilitiesto make message passing se
ure.A port 
an be thought of as a mailbox. Messages are sent to and read from ports. Ea
htask has a kernel-maintained port table in kernel prote
ted memory. The port is an indexinto this table. Ea
h entry in the table 
ontains a 
apability to send that parti
ular port.The di�erent types of 
apabilities are send, send on
e, and re
eive. The re
eive 
apability isex
lusive.There are two ways a task 
an get a 
apability to a port. The �rst way, inheriting itfrom the template task when it is 
reated, is des
ribed below in the se
tion on memorymanagement. The se
ond way is in a message sent by another pro
ess whi
h has a port
apability.Ma
h de�nes two di�erent type of messages: simple and 
omplex. Simple messages arepassed as-is from the sender to the re
eiver; the kernel does not have any knowledge of thetype of data in the message so they 
an't be used to send 
apabilities. Complex messages are3



www.manaraa.com


omposed of an arbitrary number < type; size; data > tuples. During the pro
ess of deliveringa 
omplex message the kernel s
ans through all of the tuples looking for one whose type is
apability. For ea
h tuple it �nds that mat
hes this 
riteria the kernel 
reates a 
apability inthe re
eiving task's port table and modi�es the message to refer to the new 
apability. Sin
ere
eive a

ess to a port is ex
lusive the kernel may have to remove the re
eive 
apabilityfrom the sender if the 
apability is being sent in the message.All kernel servi
es (with the ex
eption of message passing) are invoked by sending amessage to a well known kernel port provided by the template task. A pro
ess 
ommuni
ateswith a devi
e by obtaining and then sending/re
eiving messages to a port representing thedevi
e being a

essed.Network transparen
y in Ma
h is a
hieved via a network message proxy. The job of theproxy is to forward all of the ne
essary messages a
ross the network to their destination, andto re
eive all in
oming messages and dispat
h them to the 
orre
t pro
ess.4.3 Memory ManagementMa
h is unique in its approa
h to memory management. It allows a small subse
tion ofone task's virtual address spa
e to be managed by another user-level task. The unit ofmemory allo
ation in Ma
h is 
alled a memory obje
t. A memory obje
t o

upies a numberof 
ontiguous bytes in the requesting task, and is managed by a task we refer to as an obje
tpager (possibly the same task).When a task requests a new memory obje
t it spe
i�es an obje
t pager (the kernelprovides a default obje
t pager) and the virtual address where the new obje
t should appear.The kernel 
reates a 
apability to represent the newly requested obje
t and sends it to theobje
t pager in a new obje
t request message. The pager then examines the message anddetermines if it wants to satisfy the request. The kernel also 
reates two additional 
apabilitiesfor the memory obje
t that are used to 
ommuni
ate to/from the obje
t pager.During the life of the memory obje
t the kernel makes servi
e requests to the obje
tpager. For example, the kernel 
an request that data be brought into a page frame to satisfya page fault, and the kernel 
an request that a page be 
ushed out to ba
king store.Ma
h provides the obje
t pager with the ability to 
ontrol the permissions on the obje
tsit administers. This allows the pager to implement features su
h as 
opy-on-write sharingwithout spe
ial kernel support. The kernel also allows the pager to send the kernel mes-sages that pertain to a memory obje
t's state. Thus the pager 
an inform the kernel that aparti
ular page frame is no longer needed by the memory obje
t and 
an be used for otherpurposes.There is no degree of trust between the kernel and obje
t pagers, whi
h 
reates a se
urityproblem for the kernel. It must prote
t itself from mali
ious obje
t pagers. Ma
h does providekernel me
hanisms to deal with this problem, but the se
urity issue still exists.The interfa
e that is used during the 
ommuni
ation between the kernel and the pageris entirely message driven. The pager re
eives and responds to messages from the kernel,and vi
e versa. When used with the transparent network interfa
e as des
ribed above, Ma
h
an easily do remote paging. That means that the obje
t pager 
an reside on a di�erent
omputer. 4



www.manaraa.com

5 ChorusChorus began as a resear
h proje
t in 1979 at INRIA in Fran
e. The goal was to build atransparent, distributed mi
rokernel that provided better resour
e utilization, performan
e,and fault-toleran
e than then-
urrent monolithi
 kernels.While at INRIA, Chorus underwent three major revisions. The �rst version, Chorus-V0, established some of the main 
on
epts still used in the system, parti
ularly the use ofmessage passing within the kernel, and the notion of system pro
esses 
alled \a
tors." Thesubsequent versions, Chorus-V1 and Chorus-V2, re�ned existing features and added supportfor binary 
ompatibility with UNIX appli
ations.The 
urrent version, Chorus-V3, is an e�ort to move Chorus into an industrial setting.The system was rewritten in C++ and augmented with real-time support. Chorus-V3 willbe the basis for further dis
ussion. This se
tion is only intended to 
over 
ertain key aspe
ts.More 
omplete dis
ussions are available elsewhere in publi
ations [1{3, 5℄.5.1 Pro
ess ManagementA pro
ess in Chorus de�nes a prote
ted address spa
e whi
h en
apsulates the followingresour
es: a set of threads that share the resour
es of the pro
ess, a virtual memory 
ontext(dis
ussed later), and a set of ports for 
ommuni
ation with other pro
esses [5℄. There arethree types of pro
esses in Chorus, ea
h having di�erent exe
ution privileges.{ Supervisor pro
esses exe
ute in the same address spa
e as the mi
rokernel and are per-mitted to dire
tly exe
ute kernel instru
tions. They may also exe
ute privileged I/Oinstru
tions.{ System pro
esses are permitted to exe
ute kernel operations but may not exe
ute privi-leged I/O instru
tions. Unlike supervisor pro
esses, system pro
esses exe
ute in a privateaddress spa
e.{ User pro
esses may exe
ute neither kernel operations nor privileged I/O instru
tions.They run in a private address spa
e.Although Chorus 
an support multiple simultaneous pro
esses, it is not possible to mi-grate a pro
ess and its threads to another site on a distributed system.Many threads 
an exe
ute 
on
urrently within a pro
ess. Ea
h thread is 
hara
terized bythe state of the pro
essor (program 
ounter, sta
k pointer, registers, et
.). The s
hedulings
heme is very 
exible: although the basi
 s
heme is priority-based, Chorus also supportstime-sli
ing and priority degradation on a per-thread basis.Chorus supports UNIX-like fork() and exe
() system 
alls for 
reating new pro
esses.Threads are syn
hronized using mutexes, semaphores, or spin lo
ks. These syn
hronizationprimitives may be used to 
onstru
t 
ondition variables and monitors.5.2 Interpro
ess Communi
ationPro
esses 
ommuni
ate by passing messages via port obje
ts. Chorus messages are 
ontiguousbyte strings whi
h 
onsist of a 63-byte header and a variable length body. Ports are abstra
tentities whi
h represent the address of a pro
ess and a queue of unread messages. Their5



www.manaraa.com

names are globally unique identi�ers, making them lo
ation independent. While ports in
ura performan
e penalty by providing an extra level of indire
tion between 
ommuni
atingthreads, they provide a number of useful fun
tions:{ Flexible Communi
ation. Threads from di�erent pro
esses on potentially di�erentsites of a distributed network may share messages using ports.{ Multiple Communi
ation Paths. A single thread may a

ept multiple in
oming mes-sages by atta
hing more than one port to itself. Conversely, multiple threads may listenon a single port, allowing 
on
urrent pro
essing of data.{ Port Groups. It is also possible to group ports from various threads together into portgroups. Messages may be sent to port groups providing a form of multi
asting. Likeindividual ports, port groups are named by a unique identi�er.{ Dynami
 Re
on�guration. Ports may be migrated to di�erent sites. This allows theimplementation of servi
e provided by a server to be re
on�gured (whi
h may involveremoving the server from the network temporarily) without interrupting the 
lients ofthat servi
e.{ Prote
tion. Ports prevent unauthorized a

ess to threads sin
e the a

ess to a portrequires an appropriate 
apability.Chorus o�ers two 
ommuni
ation proto
ols. The �rst is asyn
hronous, one-way messagepassing. Chorus makes no guarantees about the reliability of a one-way message transfer.This proto
ol provides a highly eÆ
ient form of 
ommuni
ation for servi
es whi
h do notrequire an expli
it reply from a re
ipient. It may also serve as a basis for more reliable
ommuni
ations proto
ols.The se
ond form of 
ommuni
ation is remote pro
edure 
alls (RPC). Unlike one-waymessages, RPC is syn
hronous and reliable. More spe
i�
ally, RPC guarantees that the theresponse re
eived by a 
lient is that of the server whi
h re
eived the original request.For transferring large blo
ks of data, Chorus 
ouples virtual memory and interpro
ess
ommuni
ation whi
h permits 
opy-on-write te
hniques.5.3 Memory ManagementThe unit of data abstra
tion in Chorus is 
alled the segment. Segments generally representsome form of se
ondary storage su
h as a �le. Similarly to other abstra
tions in Chorus,segments are global and are identi�ed by 
apabilities.Ea
h pro
ess' address spa
e is divided into regions. A region is a 
ontiguous range ofvirtual addresses within a pro
ess whi
h maps a portion of a segment to a given virtualaddress. Asso
iated with ea
h mapping is a set of a

ess rights.System pro
esses known as mappers are responsible for mapping segments onto regions.If a pro
ess makes a request to read or modify data within a region, the mapper returnsthe appropriate segment 
ontaining the data. Segments are swapped on a demand basis bya user-level pro
ess 
alled the External Mapper.6 QNXQNX is a 
ommer
ial mi
rokernel-based operating system provided by the QNX SoftwareSystems 
orporation. It 
urrently supports Intel x86-based systems, and is being ported to6



www.manaraa.com

the Motorola PowerPC 7400. QNX is targeted for real-time systems and embedded systemsas well as workstation-
lass platforms. The mi
rokernel is quite small (12 Kb of 
ode) andrequires one servi
e, the pro
ess manager. More information 
an be found in [6, 7℄.6.1 Interpro
ess Communi
ationQNX handles IPC via message passing. Communi
ation endpoints are spe
i�ed by pro
essIDs. Communi
ation is network transparent in QNX: any pro
ess may 
ommuni
ate withany other pro
ess on a network if it has the 
orre
t permissions. The 
ommuni
ating pro-
esses are not aware of the lo
ation of the other pro
ess. When the kernel re
ognizes that a
ommuni
ation request is for a non-lo
al destination, it invokes the kernel's network interfa
e.QNX has two optimizations to make message passing eÆ
ient: syn
hronous 
ommuni
a-tion and multipart messages. The message passing primitives in QNX (send/re
eive/reply)only allow syn
hronous 
ommuni
ation. Be
ause of this, the kernel 
an 
opy memory dire
tlyfrom the sender's address spa
e to the re
eiver's without bu�ering the message. This savesone 
opy operation per message, and redu
es the size of the kernel's bu�ers.QNX messages 
ome in two 
avors: single and multipart messages. Single messages aretypi
al 
ontiguous-bu�er data transfers; the sender sends a blo
k of data, and the re
eiverre
eives it.Multipart messages are useful when message data is not in a 
ontiguous blo
k, but indisjoint lo
ations. Without multipart messages, the sending pro
ess would have to 
reateand 
opy the data into a 
ontiguous bu�er, and the re
eiving pro
ess would have to 
reate a
ontiguous bu�er, re
eive the message, and unpa
k the data by 
opying it out. Instead, thesender and re
eiver 
an ea
h 
reate an MX 
ontrol stru
ture. This stru
ture spe
i�es wherethe di�erent parts of the message are lo
ated (in the sender's address spa
e), and where theyshould be pla
ed (in the re
eiver's address spa
e). The MX stru
ture is basi
ally a blo
k ofpointers to di�erent portions of memory. The kernel uses this information to 
opy the datadire
tly from the sender to the re
eiver.In addition to messages, QNX also supports IPC through signals and proxies. Both signalsand proxies are forms of asyn
hronous 
ommuni
ation, where the re
eiver does not need tointera
t with the sender. A proxy 
an simply be thought of as a non-blo
king message, anda signal is a traditional UNIX-type signal where no data is transferred.Syn
hronization is handled in QNX via message passing (sin
e the primitives are syn-
hronous) and shared memory semaphores.6.2 Pro
ess ManagementThe QNX mi
rokernel handles pro
ess s
heduling, but pro
ess management is handled bythe pro
ess manager, whi
h is a separate pro
ess. However, the pro
ess manager runs in thekernel's address spa
e; no other pro
ess or OS servi
e does this.The pro
ess manager supports pro
ess 
reation through the standard fork() and exe
()primitives, and adds spawn(). Spawn merges the fun
tionality of fork and exe
 (for eÆ
ien-
y), and 
an 
reate a 
hild pro
ess on any other node on the network.The kernel handles pro
ess s
heduling based on pro
ess priorities and three s
heduling
lasses: FIFO, round-robin, and adaptive. The highest priority pro
ess that is ready to run7



www.manaraa.com

will be given the pro
essor. If there are multiple pro
esses at the same highest priority, thes
heduling 
lasses of ea
h is used to determine whi
h should be run. Ea
h priority has anasso
iated ready-to-run queue. FIFO and round-robin s
hedule pro
esses similarly, but FIFOhas no notion of a timesli
e { a pro
ess runs until it is preempted or it yields 
ontrol (bymaking any kernel 
all). Adaptive s
heduling is a form of priority degradation; it lowers apro
ess' priority by one when it 
onsumes its timesli
e, and raises it again when it blo
ks. Thisis proposed as a good poli
y for 
ompute-bound pro
esses mixed with intera
tive pro
esses.The s
heduler is run whenever a pro
ess be
omes unblo
ked, a timesli
e expires, or a runningpro
ess is preempted (by a higher priority pro
ess).6.3 Memory ManagementThere was no information available about how QNX performs memory management. Thekernel does not provide swapping by itself, however, so we presume that while the kernelperforms memory allo
ation, a user-level pro
ess provides swapping.7 ComparisonsIn this se
tion we draw 
on
lusions about whi
h mi
rokernels o�er better support for ea
hof the �ve design problems of distributed systems des
ribed in Se
tion 2: (1) network trans-paren
y, (2) 
ommuni
ation, (3) pro
ess 
ontrol, (4) s
alability, and (5) fault-toleran
e. For
ertain problems, we found that a parti
ular mi
rokernel o�ered key advantages. More gener-ally, we found that the fundamental design of mi
rokernels o�ers solutions to these problems.7.1 Network Transparen
yAll three mi
rokernels examined in this paper implement fa
ilities for sending messages a
rossthe network transparently. This servi
e is implemented in the form of user-level networkproxies at ea
h node.The 
exibility of this s
heme is demonstrated by the network paging servi
e o�ered byMa
h and Chorus. The addition of the network paging fa
ilities 
ame at little 
ost be
ausethe existing paging fa
ilities already used messages to 
ommuni
ate with the mi
rokernel.The only ne
essary addition was a network messaging server.Network paging is not the only servi
e that bene�ts from the presen
e of a messagingserver; the entire design of mi
rokernels is 
entered around messaging, so the majority of theservi
es are easily distributed in this manner.7.2 Communi
ationDistributed appli
ations on a network require message passing for 
ommuni
ation. The ef-�
ient message passing of mi
rokernels 
an support this requirement of distributed appli
a-tions.All three mi
rokernels in
lude interesting optimizations for 
ommuni
ation. For example,both Chorus and Ma
h o�er 
opy-on-write semanti
s for message passing. QNX, however,performs fewer memory 
opies due to a 
ombination of syn
hronized messages and the MXstru
ture. Although we la
k performan
e data, we believe this enhan
ement gives QNX anadvantage in shared memory message passing.8



www.manaraa.com

7.3 Remote Pro
ess ManagementWe found no properties inherent to mi
rokernels that address the issue of remote pro
essmanagement. While all three systems we investigated have the ability to 
reate and 
om-muni
ate with remote pro
esses, whi
h is valuable, we do not believe that these features areinherent to mi
rokernels.Additionally, we found that none of the systems allowed pro
ess migration a
ross a net-work, whi
h we thought 
ould hinder 
omputational load balan
ing. Sin
e mi
rokernels havea de
oupled design with an emphasis on network transparen
y, we believe that pro
ess migra-tion should be easier to implement. We would like to explore this area further to determinewhy pro
ess migration has not been implemented and what its asso
iated 
osts and bene�tsare.7.4 S
alabilitySin
e many of the servi
es of a mi
rokernel are implemented as user-level pro
esses, it ispossible to 
on�gure nodes of a distributed network with di�erent servi
es. This minimizesthe number of resour
es dedi
ated to servi
es that may never be used by a node. Furthermore,it is possible to a
hieve this without 
ompiling a di�erent version of the kernel for di�erentnodes.The port abstra
tion 
an also provide a measure of s
alability. Consider a set of serverswhi
h share and listen on a single port. It is easy to add additional servers that listen onthe same port. Even though both Ma
h and Chorus o�er ports, only Chorus allows multiplepro
esses to re
eive on a single port.It is interesting to note that QNX s
ales down very well. Its small memory footprintmakes it useful in embedded systems where the other kernels would not �t.7.5 Fault-Toleran
eMi
rokernel design o�ers fault-toleran
e in several ways related to the de
oupled stru
ture.Be
ause most operating system servi
es run in their own prote
ted address spa
es, the failureof one will not a�e
t the rest of the system. Additionally, be
ause these servi
es run as user-level pro
esses, they 
an be stopped and restarted if failures do o

ur, while the rest of thesystem 
an make progress. Finally, the simpli
ity of mi
rokernels lends to their 
orre
tnessand reliability.The port abstra
tion of both Ma
h and Chorus provides further potential for fault-toleran
e. In the event of a failure in either Ma
h or Chorus, the kernel 
an redire
t allfuture messages to the failed pro
ess to another pro
ess that provides the same servi
e.QNX la
ks this ability be
ause it uses pro
ess IDs to determine the destination of messages.8 Con
lusionIn this paper, we 
ompared Ma
h, Chorus, and QNX in the areas of pro
ess management,IPC, and memory management, to see how these systems dealt with 
ertain problems ofdistributed pro
essing. While we found some interesting di�eren
es in how the three mi-
rokernels solved these problems, we also found that the three mi
rokernels did not di�er9



www.manaraa.com

greatly from our model of a typi
al mi
rokernel. The strengths of ea
h system drew morefrom sound mi
rokernel implementation than unique optimizations.As a subje
t for future work, we are interested in studying the potential bene�ts and
osts of pro
ess migration in the 
ontext of distributed systems.We would also like to brie
y mention a few of the short
omings of our paper. First, we
hose not to 
over some important problems of distributed 
omputing, parti
ularly se
urityand devi
e I/O management. Se
ond, due to la
k of funding, we were unable to gatherrelevant performan
e data to substantiate some of our 
laims.Referen
es1. F. Armand, R.W. Dean. Data Movement in Kernelized Systems. In Pro
eedings of the Usenix Workshop onMi
ro-kernels and Other Kernel Ar
hite
tures, April 1992.2. F. Armand, M. Guillemont, and P. Leonard. Towards a distributed UNIX System { the CHORUS Approa
h. InEUUG Autumn Conferen
e, pp. 413-431, 1986.3. A. Bri
ker et al. A new look at mi
ro-kernel-based UNIX operating systems: Lessons in performan
e and 
om-patibility. In Pro
. of the EurOpen Spring'91 Conferen
e, May 1991.4. D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an Appli
ation Program. In Pro
eedings of the USENIXSummer Conferen
e, June, 19905. F. Herrmann et al. Chorus, a New Te
hnology for Building UNIX Systems. In EUUG Autumn Conferen
e, 1988.6. QNX System Ar
hite
ture. Available WWW <URL: http://www.qnx.
a/literature/qnx sysar
h/index.html>(1999).7. Symmetri
 Multi-Pro
essing (SMP) with the QNX Neutrino Mi
rokernel RTOS. Available WWW <URL:http://www.qnx.
a/literature/whitepapers/smp.html> (1999).8. A. Tanenbaum. A Comparison of Three Mi
rokernels. In The Journal of Super
omputing, July 1995.9. A. Tanenbaum. Case Study 4: MACH. In Modern Operating Systems, pp. 637-680. ISBN 0-13-588187-0.10. M. Young et. al. The Duality of Memory and Communi
ation in the Implementation of a Multipro
essor Oper-ating System. In Pro
eedings of the 11th Operating Systems Prin
iples, November, 1987

10


